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The human visual process can be studied by examining the computational
problems associated with deriving useful information from retinal images.
In this paper, we apply this approach to the problem of representing
three-dimensional shapes for the purpose of recognition.

1. Three criteria, accessibility, scope and uniqueness, and stability and
sensitivity, are presented for judging the usefulness of a representation for
shape recognition.

2. Three aspects of a representation’s design are considered, (i) the repre-
sentation’s coordinate system, (ii) its primitives, which are the primary
units of shape information used in the representation, and (iii) the organiza-
tion the representation imposes on the information in its descriptions.

3. In terms of these design issues and the criteria presented, a shape
representation for recognition should: (i) use an object-centred coordinate
system, (ii) include volumetric primitives of varied sizes, and (iii) have a
modular organization. A representation based on a shape’s natural axes (for
example the axes identified by a stick figure) follows directly from these
choices.

4. The basic process for deriving a shape description in this represent-
ation must involve: (i) a means for identifying the natural axes of a
shape in its image and (ii) & mechanism for transforming viewer-centred
axis specifications to specifications in an object-centred coordinate system.

5. Shape recognition involves: (i) a collection of stored shape descrip-
tions, and (ii) various indexes into the collection that allow a newly derived
description to be associated with an appropriate stored description. The
most important of these indexes allows shape recognition to proceed
conservatively from the general to the specific based on the specificity of
the information available from the image.

6. New constraints supplied by a conservative recognition process can
be used to extract more information from the image. A relaxation process
for carrying out this constraint analysis is described.

INTRODUCTION

Vision is a process that produces from images of the external world a description

that is useful to the viewer and not cluttered by irrelevant information. One

approach to understanding how this process works is through studying the
[ 269 ]
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information processing problems with which vision must deal. An important aspect
of vision is concerned with the representation of three-dimensional shape. In this
article, we shall argue that the way such information is represented is constrained
by its applications and by the computational problems associated with deriving
it from retinal images. These constraints are clarified and a representation con-
sistent with them is presented.

Terminology

We shall reserve the term shape for the geometry of an object’s physical surface.
Thus two statues of a horse, cast from the same mould, have the same shape. A
representation for shape is a formal scheme for describing shape or some aspects of
shape, together with rules that specify how the scheme is applied to any particular
shape. We shall call the result of using a representation to describe a given shape
a description of the shape in that representation. A description may specify a shape
only roughly, or in fine detail.

ISSUES RAISED BY THE REPRESENTATION OF SHAPE

There are many kinds of visually derivable information that play important
rbles in recognition and discrimination tasks. Shape information has a special
character, because unlike colour or visual texture information, the representation
of most kinds of information about shape requires some sort of coordinate system
within which spatial relations can be described. For example, the information that
distinguishes the different animal shapes in figure 1 is the spatial arrangement,
orientation, and sizes of the sticks. Similarly, since left and right hands are
reflexions of each other in space, any description of the shape of a hand that is
sufficient for determining whether it is left or right must in some manner specify
the relative locations of the fingers and thumb.

Criteria for judging the effectiveness of a shape representation

There are many different aspects of an object’s shape, some more useful than
others, and any one aspect can be described in a number of ways, for example by
using different coordinate systems. Although it is difficult to formulate a completely
general classification of shape representations, we attempt to set out here the main
criteria by which they may be judged, and the basic design choices that have to
be made when a representation is formulated.

CRITERION Cl. Accessibility

Can the desired description be computed from an image, and can it be done
reasonably inexpensively? There are fundamental limitations inherent in the
information available in an image — for example its resolution — and the require-
ments of a representation have to fall within the limits of what is possible.
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Ficure 1. These pipecleaner iigures illustrate several of the points developed in this paper.
A shape representation does not have to reproduce a shape’s surface in order to describe
it adequately for recognition; as we see here, animal shapes can be portrayed quite
effectively by the arrangement and relative sizes of a small number of sticks. The simpli-
city of these descriptions is due to the correspondence between the sticks shown here and
natural or canonical axes of the shapes described. T'o be useful for recognition, a shape
representation must be based on characteristics that are uniquely defined by the shape
and which can be derived reliably from images of it.
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Moreover, a description that is in principle derivable from an image may still be
undesirable if its derivation involves unacceptably large amounts of memory
or computation time.

CrITERION (2. Scope and uniqueness

What class of shapes is the representation designed for and do the shapes in that
class have canonical descriptions in the representation? For example, a shape
representation designed to describe planar surfaces and junctions between per-
pendicular planes would have cubical solids within its scope, but would be in-
appropriate for describing shapes with curved surfaces or needle-like protuberances.
If the representation is to be used for recognition, it is also important that the
description of a shape be unique, otherwise at some point in the recognition process,
the difficult problem of deciding whether two descriptions describe the same shape
would have to be addressed. If for example, one chose to represent shape using
polynomials of degree n, the formal description of a given surface would depend
on the particular coordinate system chosen. Since one would be unlikely to use
the same coordinate system on two different occasions unless some additional
conventions were being adhered to, even the same image of a surface could give
rise to very different descriptions.

CrIiTERION C3. Stability and sensitivity

Within the above scope and uniqueness conditions, there lie questions about the
continuity and resolution of a representation. To be useful for recognition, the
degree of similarity between two shapes must be reflected in their descriptions,
but at the same time even subtle differences must be expressible. These opposing
conditions can be satisfied only if it is possible to decouple stable information, that
captures the more general and less varying properties of a shape, from information
that is sensitive to the finer distinctions between shapes. For example, consider
a stick figure representation that uses the three-dimensional arrangement and
size of stick elements to describe animal shapes, as in figure 1. The size of the sticks
used gives one control over the stability and sensitivity of the resulting stick figure
description. Stability is increased by using larger sticks; a single stick provides the
most stable description of the whole shape, describing only its size and orientation.
A description built of smaller sticks, on the other hand, would be sensitive to
smaller, more local details such as the slight bends in an animal’s limbs. Such details
tend to be less stable, but can nevertheless be important for making fine distinctions
between similar shapes.

Choices in the design of a shape representation

We now relate the effects of different choices in the design of a shape repre-
sentation to the performance criteria listed above. Perhaps the most fundamental
property of a representation is that it can make some types of information explicit,
bringing the essential information to the foreground, and allowing the descriptions
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to be smaller and manipulated more quickly. Three aspects of a representation’s
design are considered here, (i) the representation’s coordinate system, (ii) its
primitives, which are the primary units of shape information used in the represen-
tation, and (iii) the organization the representation imposes on the information in
its descriptions.

DEsiaxN D1. Coordinate systems

The most important aspect of the coordinate system used by a representation is
the way it is defined. If locations are specified relative to the viewer, we say the
representation uses a viewer-centred coordinate system. If locations are specified
in a coordinate system defined by the viewed object, the representation uses an
object-centred coordinate system.

Viewer-centred descriptions are easier to produce but harder to use for re-
cognition tasks than object-centred ones, because viewer-centred descriptions
depend upon the vantage point from which they are built. As a result, any theory
for recognition that is based on a viewer-centred representation must treat distinct
views of an object essentially as distinct objects. The important characteristic of
this approach is that it requires a potentially large store of descriptions in memory
in exchange for a reduction in the magnitude and complexity of the computations
that would otherwise be required to compensate for the effects of perspective.
Minsky (1975) has suggested that this number might be minimized by an appro-
priate choice of shape primitives and of the views to be stored in memory. It is
clear that much can be accomplished with this approach in some circumstances.
For example, if squirrels need to distinguish trees from other objects but do not
need to identify particular trees by their shape, they may be able to take advant-
age of some of the general characteristics of a vertical tree trunk’s appearance
that do not depend on the vantage point so long as it is on the ground nearby. In
a representation based on these characteristics, all trees in the squirrel’s environ-
ment would produce essentially the same description. For more complex recog-
nition tasks, however, where finer subtleties of the arrangement of the object’s
components are important, it is unlikely that a viewer-centred representation can
be found that will not be sensitive to the object’s orientation. For example, con-
sider the many orientation-dependent appearances of a human hand, that exist
even if the fingers and thumb remain fixed with respect to each other. In order to
distinguish a left hand from a right using a viewer-centred representation, one
would probably have to treat this problem as many separate cases, one for each
possible appearance of a hand.

The alternative to relying on an exhaustive enumeration of all possible appear-
ances, is to use an object-centred coordinate system, placing greater emphasis on
the computation of a canonical description which is independent of the vantage
point. Ideally, only a single description of each object’s spatial structure would
then have to be stored in memory in order for that object to be recognizable from
even unfamiliar vantage points. An object-centred description is however more
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difficult to derive since a unique coordinate system has to be defined for each
object and that coordinate system has to be identified from the image before the
description is constructed.

DEsieN D2. Primitives

The primitives of a representation are the most elementary units of shape
information available in a representation, which is the type of information that
the representation receives from earlier visual processes. For example, figure 2
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Ficure 2. A description of an object’s shape has to be derived via a description of its visible
surface, since the information encoded in images, for example by stereopsis, shading,
texture gradients, or occluding contours, is due to a shape’s local surface properties. The
objective of many early visual computations is to extract this information and we shall
refer to the representation that makes it explicit as the 2%-D sketch. An example is shown
here which provides information about the orientation (relative to the viewer) of small
patches of surface spaced evenly over the visual field. The arrows depict the direction of
steepest descent and its magnitude by their direction and length (the longer the arrow, the
greater the dip of the surface element out of the image plane). The information carried by
this representation’s primitives is therefore specified by these arrows.

illustrates an example of a representation whose primitives carry information about
local surface orientation and distance (relative to the viewer) at thousands of evenly
spaced locations in the visual field. We separate two aspects of a representation’s
primitives, the type of shape information they carry, which is important for
questions of accessibility, and their size, which is important for questions of
stability and sensitivity.

There are two principal classes of shape primitive, surface-based (two-dimen-
sional) and volumetric (three-dimensional). Surface information is more immedi-
ately derivable from images. The simplest primitives useful for surface descriptions



Representing shape for recognition 275

would specify just the location and size of small pieces of surface. More elaborate
surface primitives like those used in figure 2 could include orientation and depth
information as well. On the other hand, volumetric primitives carry information
about the spatial distribution of a shape. This type of information is more directly
related to the requirements of shape recognition than information about a shape’s
surface structure, and this often means that much shorter and therefore more
stable descriptions can still satisfy the sensitivity criterion. The simplest volumetric
primitive specifies just a location and an extent, and corresponds to a roughly
spherical region in space. By adding a vector to this information, a roughly
cylindrical region can be specified, where the length of the vector indicates the
length of the cylinder and the spatial extent parameter indicates its diameter.
A second vector could, in addition, indicate a rotational orientation about the
first vector. This would make it possible to specify a pillow-shaped region whose
cross section along the first vector is thicker in the direction of the second vector.
An additional vector could also be used to specify a curvature in the axis of the
cylindrical region by indicating its direction and magnitude.

The complexity of the primitives used by a representation is limited largely by
the type of information that can be derived reliably by processes preceding the
representation. While the information-carrying capacity of primitives can be
extended arbitrarily, there is a limit to the amount that is useful, since very detailed
primitives will be derived less consistently by those earlier processes. In the ex-
treme case, descriptions in a shape representation would consist of a single
primitive. Such a representation would satisfy the uniqueness and stability con-
ditions only if the information carried by the primitives were derived consistently
by the processes supplying it. If this were so, however, those processes would
already have accomplished shape recognition in specifying the primitive ; and there
would be no need for the representation.

Size is the other aspect of a representation’s primitives that influences the
information it makes explicit. In particular, information about features much
larger than the primitives used is difficult to access since it is represented only
implicitly in the configuration of a large number of smaller items. For example,
consider how the arm of a human shape would be described in a surface repre-
sentation like the one illustrated in figure 2. Only information about small patches
of surface is present, so a rather sophisticated analysis of a large assembly of these
is required to make explicit the presence of the arm-shape itself. A stick figure
representation, on the other hand, can specify an arm explicitly with a single stick
primitive of the appropriate size.

At the other end of the scale, features of a shape that are much smaller than the
primitives used to describe it are not just inaccessible, they are completely omitted
from the description. For example, the fingers of a human shape are not expressible
in a stick figure description that uses only primitives the size of the arms and legs.
Similarly, surface details much smaller than the primitives used in figure 2 would
be inexpressible in that representation. Thus the size of the primitives used in a
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description acts as a very strong determiner of the kind of information made explicit
by a representation, the information made available but not directly obtainable,
and the information that is discarded.

DEsiexN D3. Organization

The third design dimension we consider is the way shape information is organized
by a representation. In the simplest case, no organization is imposed by the
representation and all elements in a description have the same status. The local
surface representation in figure 2 is an example. Alternatively, the primitive
elements of a description can be organized into modules consisting, for example,
of spatially adjacent elements of roughly the same size, in order to distinguish
certain subgroupings of the primitives from others. This is closely related to the
principle of explicit naming (Marr 1976) which states that it is important to be able
to give names to groups of elements in a representation so that properties can be
associated with them and external processes can reference them efficiently.
Similar ideas occur in the fields of computer science and artificial intelligence (see
for example, Winston 1975). A modular organization is especially useful for
recognition because it can make sensitivity and stability distinctions explicit, by
arranging for all constituents of a given module to lie at roughly the same level of
stability and sensitivity.

TrE 3-D MODEL REPRESENTATION

In terms of the requirements of shape recognition, which we have attempted to
quantify as the criteria C1, C2, and C3, a shape representation should be object-
centred (D1), volumetric (D2), and modular (D3). These choices have strong
implications, and a limited representation which we shall call the 3-D model
representation can be defined quite directly from them.

Shapes having natural coordinate systems

Our first objective is to define a shape’s object-centred coordinate system. If it
is to be canonical it must be based on axes determined by salient geometrical char-
acteristics of the shape, and conversely, the scope of the representation must be
limited to those shapes for which this can be done. A shape’s natural axes may be
defined by elongation, symmetry or even motion (e.g. the axis of rotation), so that
the coordinate system for a sausage should be defined by its major axis and the
direction of its curvature, and that of a face by its axis of symmetry. Objects with
many or poorly defined axes, like a sphere, a door, or a crumpled newspaper, will
inevitably lead to ambiguities. For a shape as regular as a sphere this poses no
great problem, because its description in all reasonable systems is the same. For
a door there are four distinguished axes, defined by the directions of its length, its
width, its thickness, and also by the axis on which it is hinged. Since the number
is small and doors are important, one could deal with each of the four possible
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descriptions of a door as separate cases. This would not be true for a crumpled
newspaper, however, which is likely to have a large number of poorly defined axes.

At present, the problems we understand best are those surrounding the deter-
mination of axes based on a shape’s elongation; so for this paper we shall limit the
scope of the 3-D model representation to shapes whose natural axes are of this
type. A large class of shapes that satisfy this condition are the generalized cones.
(A generalized cone is the surface swept out by moving a cross-section of constant
shape but smoothly varying size along an axis.) Binford (1971) drew attention to
this class of surfaces, suggesting that it might provide a convenient way of des-
cribing three-dimensional surfaces for the purposes of computer vision. We regard
it as an important class not because their surfaces are conveniently described, but
because such shapes have well-defined axes. Many common shapes are included in
the scope of such a representation, because objects whose shape was achieved by
growth are often described quite naturally in terms of one or more generalized
cones. The animal shapes in figure 1 provide some examples; the individual sticks
are simply axes of generalized cones that approximate the shapes of parts of these
animals.

Stick figure descriptions

To be useful for recognition the representation’s primitives must also be
associated with stable geometric characteristics. The natural axes of a shape
satisfy this requirement, and we shall therefore base the 3-D model representation’s
primitives on them. A description that uses axis-based primitives can be thought of
as a stick figure, like those depicted in figure 1. While only a limited amount of
information about a shape is captured by such a description, that information is
especially useful for recognition. We shall further limit the information carried by
these primitives to just size and orientation information. This will enable us to
develop the character of the 3-D model representation with a minimal commitment
to inessential details. More elaborate details, such as curved axes or the tapering
of a shape along the length of its axis, will not be included here.

The concept of a stick figure representation for shape is not new. Blum (1973)
for example has studied a classification scheme for two dimensional silhouettes
based on a grassfire technique for deriving a kind of stick figure from those shapes,
and Binford (1971) introduced the generalized cone for three-dimensional shapes.
These representations have one characteristic in common, however; they do not
impose a modular organization on the information they carry. For example, each
part of the arm of a human shape can correspond to at most one stick in these
representations; it would not be possible to have both a single stick corresponding
to the whole arm and three smaller sticks corresponding to the major segments of
the arm in the same description.

Modular organization of the 3-D model representation

Them odular decomposition of a description used for recognition must be well
defined. This is best achieved, in the 3-D model representation as it is specified so
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far, by basing it on the canonical axes of a shape. Each of these axes can be associ-
ated with a coarse spatial context that provides a natural grouping of the axes of
the major shape components contained within that scope. We shall refer to a
module defined this way as a 3-D model. Thus each 3-D model specifies:

(i) A model axis, which is the single axis that defines the extent of the shape
context of the model. This is a primitive of the representation and it provides
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Ficure 3. This diagram illustrates the organization of shape information in a 3-D model
description. Each box corresponds to a 3-D model; with its model axis on the left side of
the box and the arrangement of its component axes shown on the right side. In addi-
tion some component axes have 3-D models associated with them and this is indicated
by the way the boxes overlap. The relative arrangement of each model’s component axes,
however, is shown improperly since it should be in an object-centred system rather than
the viewer-centred projection used here (a more correct 3-D model is shown in figure 5).
The important characteristics of this type of organization are: (i) each 3-D model is a
self-contained unit of shape information and has a limited complexity, (ii) information
appears in shape contexts appropriate for recognition (the disposition of a finger is most
stable when specified relative to the hand that contains it), and (iii) the representation
can be manipulated flexibly. This approach limits the representation’s scope however,
since it will only be useful for shapes that have well defined 3-D model decompositions.

coarse information, such as size and orientation, about the overall shape described,
and optionally:

(ii) The relative spatial arrangement and sizes of the major component axes
contained within the spatial context specified by (i). The number of component
axes should be small and they should be of roughly the same size.

(iii) The names (internal references) of 3-D models for the shape components
associated with the component axes, whenever such models have been constructed.
Their model axes correspond to the component axes of this 3-D model.

Each of the boxes in figure 3 depicts a 3-D model with the model axis on the left
and an arrangement of component axes on the right. The model axis of the human
3-D model makes explicit the gross properties (size and orientation) of the whole
shape with a single primitive. The six component axes corresponding to the torso,
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head and limbs can each be associated with a 3-D model which would contain
additional information about the decomposition of that component into an
arrangement of smaller components. Although a single 3-D model is a simple
structure, the combination of several in this kind of organizational hierarchy
allows one to build up a description that captures the geometry of a shape to an
arbitrary level of detail. We shall call such a hierarchy of 3-D models a 3-D model
description of a shape.

The example in figure 3 illustrates the important advantages of a modular
organization for a shape description. The stability of the representation is greatly
enhanced by including both large and small primitive descriptions of the shape
and by decoupling local spatial relations from more global ones. Without this
modularization, the importance of the relative spatial arrangement of two adjacent
fingers would be indistinguishable from that of the relation between a finger and
the nose. Modularity also allows the representation to be used more flexibly in
response to the needs of the moment. For example, it is easy to construct a 3-D
model description of just the arm of a human shape which could later be included
in a new 3-D model description of the whole human shape. Conversely a rough but
usable description of the human shape need not include an elaborate arm descrip-
tion. Finally, this form of modular organization allows one to trade-off scope
against detail. This simplifies the computational processes that derive and use the
representation, because even though a complete 3-D model description may be
very elaborate, only one 3-D model has to be dealt with at a time, and individual
3-D models have a limited complexity.

The coordinate system of the 3-D model

There are two kinds of object-centred coordinate system that the 3-D model
representation might use. In one, all the component axes of a description, from
torso to eyelash, are specified in a common frame based on the axis of the whole
shape. The other uses a distributed coordinate system, in which each 3-D model
has its own local coordinate system. We choose the latter for the following reasons:
The spatial relations specified in a 3-D model description are always local to one of
its models and should be given in a frame of reference determined by that model
for the same reasons we prefer an object-centred system over a viewer-centred one.
To do otherwise would cause information about the relative dispositions of a model’s
components to depend on the orientation of the model axis relative to the whole
shape. For example, the description of the shape of a horse’s leg would depend on
the angle the leg makes with the torso. In addition to this stability and uniqueness
consideration, the representation’s accessibility and modularity is improved if
each 3-D model maintains its own coordinate system, because it can then be dealt
with as a completely self-contained unit of shape description.

The local coordinate system, for specifying the relative arrangement of a 3-D
model’s component axes, can be defined by its model axis or by one of its compon-
ent axes. We shall refer to the axis chosen for this purpose as the model’s principal
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axis. For the examples of this paper, the principal axis will be the component axis
that meets or comes close to the largest number of other component axes in the
3-D model (for example the torso of an animal shape). The location of the principal
axis must also be specified relative to the model axis, in order to maintain the
connectedness of the distributed coordinate system.

(b)

Ficure 4. The spatial organization of a 3-D model’s axes is specified in terms of pairwise
relations between those axes which we call adjunct relations. The disposition in space
of one axis, S, is determined relative to another, A, by specifying the location of one of its
end points in a cylindrical coordinate system, (p, r, 6), about A as shown on the left,
and its orientation in a spherical coordinate system, (z, ¢, s), centred on that point and
aligned with A as shown on the right.

Two three-dimensional vectors are required to specify the position in space of
one axis relative to another. This can be done either by specifying the locations of
its two end points or by specifying one end point and using the other to give its
orientation. The second method will be more useful to us here. When one axis, S,
is specified relative to another, 4, it will be convenient to represent the location
vector in cylindrical coordinates, (p, r, @) where p is the position along the length
of 4 (0 and 1 correspond to the endpoints of 4), r is the radial distance away from
A, and 0 is the angular rotation about A as shown in figure 4a. The orientation
vector will be specified in spherical coordinates, (i, @, s), where 7 is the angle of
inclination away from the direction of 4 ; ¢, like 6, is the rotation about 4 ; and s
is the size of S relative to 4, as in figure 4b. We shall call the combined specification
(p, 7, 0, ¢, §, s) an adjunct relation for S relative to 4.

Because of the varying precision with which 3-D models can represent a shape,
it is appropriate to represent the angles and lengths that occur in an adjunct
relation in a system that specifies both a value and a tolerance. For example, it is
possible to state that a particular axis like the arm component of the human 3-D
model in figure 3 is connected rather precisely at one end of the torso with ¢ coarsely
specified and very little restriction on 7. An example of such a system is illustrated
in figure 5.
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Ficure 5. Angle and distance specification in an adjunct relation must include tolerances so
that the specificity of these parameters can be made explicit in the representation. One
way to do this is shown in the upper diagrams which associate symbols with angular
and linear ranges respectively. An example of adjunct relations for the human 3-D model
in figure 3 using these symbols is shown in the lower table. A and S identify the two axes
related by the adjunct relation specified on each row. If these mnemonic names were
replaced by internal references to the corresponding 3-D models whenever they exist
and left blank otherwise, this table would show essentially all the information carried
by a 3-D model.

DERIVING AND USING THE 3-D MODEL REPRESENTATION

The advantages of modularity, which have been one of our major concerns in
the design of the 3-D model representation, will become especially visible as we
discuss the processes that derive and use the representation for recognition. In
particular, none of the processes has to deal with the internal details of more than
one 3-D model at a time even if the complete description of a shape involves many
3-D models. We begin by examining the basic problems associated with identifying
a model’s coordinate system, its component axes, and transforming the viewer-
centred axis specifications into specifications in the model’s coordinate system.
We then treat the task of recognizing this description as a problem of indexing
a catalogue of stored 3-D model descriptions. Finally, we consider the interaction
between the process that derives a 3-D model description and the recognition pro-
cess. The ambiguities introduced by the perspective projection often mean that
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only coarse specifications of the lengths and orientations of a shape’s axes are
directly accessible from its image. However, if the recognition process proceeds
conservatively in conjunction with the derivation process, it will be possible for
it to make additional constraints available so that a more precise description can
be produced.

Deriving a 3-D model description from an image

The construction of a 3-D model requires (i) the identification of the model’s
coordinate system and its component axes from an image and (ii) the specification
of the arrangement of the component axis in that coordinate system.

Coordinate system and component identification

Even if a shape has a canonical coordinate system and a natural decomposition
into component axes, there is still the problem of deriving them from an image. At
present we do not have a complete solution to this problem, but some results have
been obtained for shapes that fall within the scope of the 3-D model representation.
Marr (1977) has shown that the image of a generalized cone’s axis may be found
from the occluding contours in an image, provided that the axis is not too fore-
shortened. An example of the decomposition formed by this method appears in
figure 6, and a brief description is given in the legend. Notice that the final decom-
position (f) was derived from the contour () without a priori knowledge of the three-
dimensional shape apart from the assumption that it is composed of generalized
cones. The method can therefore be used to find the component axes for the 3-D
model of a shape that has not been seen before.

This result is somewhat limited, but so is the information it uses. The contours
Marr studied are formed by rays that are tangential to the side of a smooth surface.
(Interestingly, these particular contours are unsuitable for use in either stereopsis
or structure-from-motion computations, because they do not correspond to fixed
locations on the viewed surface.) Creases and folds on a surface also give rise to
contours in an image, and these have yet to be studied in detail. Similarly much
work remains in the study of how to use information about shape from shading,
texture, stereo and motion.

A major difficulty in the analysis of images arises when an important axis is
obscured, either because it is foreshortened or is hidden behind another part of the
shape. For example, although the torso-based coordinate system for the overall
shape of a horse is easily obtained from a side view, it is difficult to obtain when
the horse faces the viewer. There are three ways of dealing with this situation. The
first is to allow partial descriptions, that are based on the axes that can be seen
from the front, to be used for recognition. If this were done, the representation
would be slightly weakened in terms of the uniqueness criterion but not as severely
as a purely viewer-centred representation. Another strategy is to use a shape’s
visible components whenever their recognition is easy but that of the overall
shape is difficult. For example, the front view of a horse usually contains an
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F1cure 6. The occluding contours of simple shapes composed of generalized cones can be used
to locate projections of its natural axes provided that they are not severely foreshortened
(Marr 1977). One approach to doing this is shown in this example from a program
written by P. Vatan. The initial outline in (@) was obtained by applying local grouping
processes to the primal sketch of an image of a toy donkey (Marr 1976). This outline was
then smoothed and divided into convex and concave sections to get (b). Next, strong
segmentation points, like the deep concavity circled in (¢), are identified and a set of
heuristic rules are used to connect them with other points on the contour to get the
segmentation shown in (d). The component axes shown in (e) were then derived from
these. The thin lines in (f) indicate the position of the head, leg, and tail components
along the torso axis, and the snout and ear components along the head axis.
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excellent view of the horse’s face which can be recognized directly and would
provide another route by which the horse can be recognized. This strategy will be
discussed further at the end of this section. Finally, it is sometimes possible to dis-
cover an axis that points directly at the viewer using radial symmetry in the
image.
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Fi1cUrE 7. These views of a water bucket illustrate an important characteristic of any system
based on the derivation of canonical axes from an image. The techniques useful for
finding the axis shown in (b) from the image (a) are quite different from those that are
best for situations where the axis is foreshortened as in (¢) and (d).

A water-bucket like that shown in figure 7 provides an interesting example of
this. Its principal axis and the shape about that axis are derivable by the methods
discussed above for the view shown in figure 7a but not for the view in figure 7¢
where the bucket’s principal axis is foreshortened. An erroneous axis is likely to be
established instead, perhaps going through the flanges that attach the handle to
the rim. However, a failure to produce a recognizable description using this axis
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would suggest that the correct axis is not the most pronounced in the image and an
alternative can be sought. The two concentric circles (made by the top and bottom
rims of the bucket) are strong clues which suggest that the principal axis passes
through their centres. Furthermore, because they are concentric, these circles may
be at widely separated locations along the axis and considering that possibility
leads to the desired description of the bucket though the identity of the closer rim
remains ambiguous. A local surface depth map like that illustrated in figure 2,
computed using stereopsis, shading, or texture gradients for example, is likely to
play an important role in interpreting images like these.

Relating viewer-centred to object-centred coordinates

Techniques for finding axes in a two-dimensional image describe their locations
in a viewer-centred coordinate system, and so a transformation is required to
convert their specifications to an object-centred coordinate system. In the 3-D
model representation all axis dispositions are specified by adjunct relations, as in
figure 4, so a mechanism is required for computing an adjunct relation from the
specification of two axes in a viewer-centred coordinate system. We shall call
this mechanism the vmage-space processor.

The image-space processor can be kept very simple. The adjunct relation is the
only positional specification that has to be interpreted, since it is also how one links
the coordinate systems of different 3-D models within the same description;
furthermore, the number of adjunct relations within a 3-D model is small, and
the image-space processor need deal with only one at a time. It will also be useful
to compute the reverse transformation, from adjunct relation to two-dimensional
projection, because this makes it possible to compute the appearance of a model’s
component axes given the orientation of the model’s principal axis relative to the
viewer. For either transformation, the image-space processor must maintain an
object-centred coordinate frame specified in viewer-centred coordinates. This
frame is maintained by the image space processor in terms of an axis specification
which we shall refer to as the 4ais and a vector which defines the direction of zero
0 and ¢ about the Axis. The Axis is used to represent the position and orientation
of a 3-D model’s principal axis, and a second axis, which we call the Spasar, is
maintained to represent the disposition of a component axis of the model. The
image-space processor makes the coordinates of the Spasar available simultaneously
in a frame centred on the viewer and in one centred on the Axis, so that specifying
the Spasar in either frame makes it available in the other.

The accuracy of the adjunct relations computed by the image space processor is
limited by the precision to which the Axis and Spasar are specified in the viewer-
centred coordinate system. Since depth information is lost in the perspective
projection, the precision of the orientation specifications for axes derived from
the retinal images is least for the amount the axes dip towards or away from the
viewer. Axis dip parameters can often be reconstructed at least roughly by using
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stereopsis, shading, texture gradients, structure-from-motion, and contour analysis.
Constraints supplied by the recognition process can also be used to improve the
precision of the dip specifications. We shall consider this possibility later when we
discuss the interaction between the derivation process and recognition.

Indexing and the catalogue of 3-D Models

Recognition involves two things, (i) a collection of stored 3-D model descriptions
and (ii) various indexes into the collection that allow a newly derived description
to be associated with a description in the collection. We shall refer to the above
collection along with its indexing as the catalogue of 3-D models. Although our
knowledge of what information can be extracted from an image is still limited,
there are three access paths into the catalogue that appear to be particularly
useful. They are the specificity index, the adjunct index, and the parent index.

Three-dimensional models can be classified hierarchically according to the pre-
cision of the information they carry, and an index can be based on this classification.
We call it the specificity index, and figure 8 shows an example of this organization
for models of a few animal shapes. The topmost level contains the most undiffer-
entiated description available, a 3-D model without a component decomposition;
only the model axis is specified so the model describes any shape. At the next
level of detail, there is a general quadruped shape, a biped shape, a bird-like shape,
and various limbs. These descriptions are most sensitive to the number of com-
ponent axes in the model and to their distribution along the principal axis (which
is the torso for most animal shapes), while only very coarse information about the
lengths and orientations of the components is available. One level lower in the
hierarchy the descriptions become more sensitive to angles and lengths, so that
distinctions can be made for example between horse, giraffe, and cow shapes.
A newly derived 3-D model may be related to a model in the catalogue by starting
at the top of the hierarchy, and working down the levels through models whose
shape specifications are consistent with the new model’s, until a level of specificity
is reached that corresponds to the precision of the information in the new model.

Once a 3-D model for a shape has been selected from the catalogue, its adjunct
relations provide access to 3-D models for its components based on their locations,
orientations and relative sizes. This gives us another access path to the models in
the catalogue, and we call it the adjunct index. It tells one, for example, that the
two similar components lying at the front end of a quadruped model are general
limb models, and for a horse model they are more specific horse limb models. The
adjunct index is useful for providing default information about the components of
a shape prior to the derivation of 3-D models for them from the image, and also
in situations where a catalogued model is not accessible via the specificity index
because the description derived from the image is inadequate (perhaps because
the component has very little structure).

The third access-path that we consider important is the inverse of the second
and we call it the parent index of a 3-D model. When a component of a shape is
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Ficure 8. If the recognition process of relating new shape descriptions to known shapes is to
be useful as a source of reliable information about the shape, it must be conservative.
This diagram illustrates an organization (or indexing) of stored shepe descriptions
according to their specificity. The top row contains the most general shape description
which carries information about size and overall orientation only. Since no commitment
about the shape’s internal structure is made, all shapes are described equally well.
Descriptions in the second row include information about the number and distribution
of component axes along the principal axis, making it possible to distinguish a number
of shape configurations (a few are shown in this example). At this point only very general
commitments are made concerning the relative sizes of the components and the angles
between them. These parameters are made more precise at the third level so that dis-
tinctions can be made, for example, between the horse and cow shapes. A newly derived
3-D model would be related to a model in this catalogue by starting at the top level and
working downwards as far as the information in the new description allows.
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recognized, it can provide information about what the whole shape is likely to be.
For example, the catalogue’s 3-D model for a horse can be indexed under each ofits
component 3-D models so that the 3-D model for a horse’s leg provides access to
the 3-D model for a horse-shape. This index would play an important réle in the
situation we discussed earlier, where an important axis of a shape is obscured or
foreshortened. When a horse faces the veiwer, the omission of the torso and hindleg
axis might cause the neck axis to be selected incorrectly as the principle axis.
Unless special provision has been made to handle this case, the specificity index
will fail to access a horse model in the catalogue. A reasonable strategy to follow
at this point would be to apply the derivation process to the components of the
image. In this example, 3-D models for the head, neck, and the two forelegs would
be produced. Catalogued models for the head and legs are likely to be found by
using the specificity index and each of these would indicate via the parent index
that it is a component of either the quadruped or the horse 3-D model (depending
on the quality of the derived component models), providing strong evidence for
considering the quadruped or horse model for the whole shape.

It is important to note that the adjunct and parent indexes play a réle secondary
to that of the specificity index, upon which our notion of recognition rests. We
shall see below that their purpose is primarily to provide contextual constraints
that support the derivation process, for example by indicating where the principal
axis is likely to be when such information cannot be obtained directly from the
image. They do not prevent novel composite shapes such as a centaur from being
described faithfully and from being recognized, for example, as a horse shape with
a human bust.

It may be useful to construct other indexes into the catalogue, based for example
on colour or texture characteristics (e.g. the stripes of a zebra), or even on non-
visual clues such as the sounds an animal makes, but these lie outside of the scope
of this paper.

The interaction between dertvation and recognition

So far, the derivation of a 3-D model has been treated separately from the pro-
cess of relating that model to the stored models of the 3-D model catalogue. We
view recognition as a gradual process proceeding from the general to the specific,
that overlaps with, guides, and constrains the derivation of a description from
the image. When a catalogued model is selected by using one of the three indexes
above, we want to use it to improve the analysis of the image. There are two phases
to this, (i) the component axes from the image must be paired with the adjunct
relations supplied by the catalogue, and (ii) the image space processor must be
employed to combine the constraints available from the image with those provided
by the model to produce a new set of derived adjunct relations that are more
specific than those from the catalogue model. This last phase involves an analysis
of constraints that derives adjunct relations consistent with both the image and
the information from the catalogue. The general idea of using a stored model of
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a shape to assist in the interpretation of an image was first used by Roberts (1965)
in a computer program for describing images of shapes built out of cubes, wedges,
and hexagonal prisms in terms of their edges.

Finding the correspondence between image and catalogued model

The first phase can be thought of as a homology problem, in which the adjunct
relations of a catalogue model must be related to the axes derived from an image.
There may not be a complete solution. For example, the leg axes in a silhouette
of a horse from the side are easily identified, but the left and right forelegs cannot
usually be disambiguated without further information. Often this may be tolerable
however, since the corresponding adjunct relations for the two legs have the same
general orientation specifications (they differ only in their locations), and this is
all that the following analysis makes use of.

The information available for establishing the correspondence between image
and model increases as the derivation-recognition process proceeds. Initially,
positional information along the principal axis of the stick figure has priority since
it is the least distorted by the perspective projection. Other clues available initially
include (i) the relative thicknesses of the shapes about the component axes (the
neck of a horse is much thicker than the legs); (ii) possible decompositions of
component axes (the tail and legs of a horse may be roughly straight, but the
bust has two components that always make a large angle with one another); (iii)
symmetry or repetition (the legs of a horse are all the same thickness, are roughly
parallel, and because of this have roughly the same length and orientation in the
image, distinguishing them from the tail); and (iv) large differences in the ¢ angle
of the adjunct relation (in an image, the legs and tail of a horse usually extend to
one side of the torso while the bust extends to the other). Collectively, such clues
are often sufficient to relate the major components of a 3-D model to the axes
derived from an image.

Homology information is also made available by the adjunct and parent indexes.
When a 3-D model from the catalogue is obtained using the adjunct index the
polarity of that components axis is automatically determined. For example, when
continuing the analysis of the image of a horse to one of the legs, the polarity of the
leg axis is indicated by its connection with the torso (the hoof end being distal to
that junction). When the selection of a catalogue model is based on the identifi-
cation of a shape’s components using the parent index, the pairings for these
components are already determined and they strongly constrain pairings for the
remaining components. For example, in the case of the horse facing the viewer,
the missing torso’s location in the image can be found from the locations of the head,
neck and forelegs.

Constraint analysis

Once a homology has been established between a 3-D model and the image, we
want to use the additional information it makes available to constrain the possible
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dip angles for the axes. The basic idea is that there are often only a few combin-
ations of dip specifications for the projected axes in the image for which the adjunct
relations derived from the image would be consistent with those supplied by the
catalogue model. Or equivalently, there are often only a few orientations of the
catalogue model’s principal axis (relative to the viewer) for which the appearance
of its component axes match closely the projected axes in the image.

The combination of information from the image and the catalogue model is often
sufficient to determine the axis dips uniquely up to reflexion. For example in
figure 9, (a) shows the locus of Axis orientations (relative to the viewer) that are
consistent with an inclination of 90° between the Axis and the Spasar, and an angle
of 47° between their projections onto the image plane; (b) shows the allowed
orientations for an inclination angle of 45° and a projected angle of —111°; and (c)
shows the intersection of these two sets. The sharpness of these constraints depends
on the particular viewing angle (as indicated by the other examples in figure 9),
and on the particular adjunct relations in the model. Generally, the constraints
are the strongest when the component axes have very different orientations and
when the principal axis does not lie in the image plane.

There are several algorithms that can use these constraints. Perhaps the simplest
is a relaxation process that adjusts the orientation of the Axis incrementally, seeking
the disposition for which the projections of the angles between the component
axes of the catalogue model, as computed by the image space processor, best agree
with those in the stick figure image. At this point the Axis indicates the orientation
of the principal axis that is most consistent with all of the constraints and the
Spasar can be used to compute the orientations of each of the component axes
using the adjuncts from the catalogue model. This hill climbing approach converges
quite effectively when the constraints are sufficiently strong. Alternatively, in-
stead of relaxing the orientation of the catalogue model’s principal axis, one can
relax the dip angles of the sticks obtained from the image. In this case, the
discrepancy measure is obtained by comparing adjunct relations derived between
the sticks in the image with the corresponding adjunct relations from the catalogue.
This approach is interesting because in its implementation, all of the trans-
formations carried out by the image space processor are in the same direction
(from viewer-centred to object-centred coordinates). In a final step, improved

FicUre 9. Specifying the inclination angle, ¢, that the Spasar makes with the Axis, and the
angle between their images strongly constrains the orientation of the Axis’ coordinate
system relative to the viewer. (a) shows the orientations consistent with an inclination of
90° and an image angle like that between the heavy lines in the accompanying stick
figure (allowing a tolerance of plus or minus five degrees in the image angle). The
horizontal axis of the graph indicates the angle the Axis dips out of the image plane
towards the viewer. The vertical axis is the amount the coordinate system is rotated
about the Axis. (b) shows the set of orientations consistent with ¢ = 45° and the angle
between the images of the torso and neck axes. (¢) shows the intersection of the two sets
which is restricted to a narrow range of orientations having a dip of approximately 67°
out of the image plane (there is another solution not shown here at — 67°). The remaining
rows show cases for a dip of 45° and 0° respectively.
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orientation information may be used to recover more information from the image.
In particular, once the orientations of the axes have been determined, their relative
lengths may be computed.

The overall recognition process may be summarized as follows. One first selects
a model from the catalogue based on the distribution of components along the
length of the principal axis. This model then provides relative orientation con-
straints that help to determine the absolute orientations (relative to the viewer)
of the component axes in the image, and with this information the image space
processor can be used to compute their relative lengths. This new information
can then be used to disambiguate shapes at the next level of the specificity index.

DiscussioN

We have outlined a theory for visual shape recognition that is based on the
specification of a representation for shape and a discussion of the nature of the
processes that derive and use it. It is incomplete both in terms of its limited scope
of applicability and in the specification of many of its details; but it raises several
precise questions that are apparently important for shape recognition. In this
section we consider the theory in a broader perspective, examining its relation to
other parts of the visual process, and some of the questions it raises for psychology.

The approach

We have studied vision as a process that assembles descriptions in a number of
representations, each specializing in some aspect of the visual scene with later ones
building on the information made explicit by those before them. This approach is
suggested by several experimental findings (for example, Hubel & Wiesel 1962),
and it is consistent with the principle of modularity (Marr 1976) which states that
any large computation should be split up into a collection of small, nearly in-
dependent, specialized sub-processes. If visual information processing were not
organized in this way, incremental changes in its design would be unable to improve
one aspect of the process’s performance without simultaneously degrading the
operation of many others.

There are several criteria that help us to identify modules in the visual process.
Early in the processing, computational considerations (what can be computed from
the available information) and evidence from neurophysiology and psychophysics
provide the most useful constraints. An example of an early representation is the
primal sketch (Marr 1976), which represents the intensity changes and the local
geometry of an image. For later modules like the one addressed in this paper, the
strong constraints arise from what the representation is to be used for.

Psychological considerations

The ideas we have discussed can be examined experimentally at two levels, by
considering either the type of information made explicit by the visual process in its
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representations, or by considering the nature of the processes that derive and
maintain it. The first is the more fundamental; is a three-dimensional representation
used, does it have a modular organization, and is it object-centred ? These questions
have yet to be put to empirical test, but three observations are worth noting here.
The first is that stick figure animals like those shown in figure 1 are usually recog-
nized easily despite the limited amount of shape information they portray. While
this does not demonstrate that the human visual process is based on stick figures,
it does suggest that the type of information carried by stick figures plays an

important role in it.

.
.
.
%

Fiaure 10. The effect of different choices of an object-centred coordinate system on the
perception cf shape is apparent in these diagrams which were adapted from Attneave
(1968). The black shapes can be seen as diamonds or squares depending on which of their
several natural axes is used.

Secondly, illusions like that shown in figure 10 (due originally to Ernst Mach, and
adapted from Attneave 1968) provide evidence that local shape information is
described relative to axes that are defined more globally. In the top row, the shapes
are seen as diamonds, whereas along the diagonal they are seen as squares. The
diagonal axis is therefore being constructed during the analysis of this pattern;
it influences, and therefore probably precedes, the description of the shapes of the
local elements.

Thirdly, Warrington & Taylor (1973) drew attention to the difficulty experienced
by their patients with right parietal lesions at interpreting certain views of common
objects which they called unconventional views. For example, these patients would
fail to recognize the top view of a bucket (figure 7¢), denying that it was a bucket
even when told that it was. The patients were relatively unimpaired on views like
figure 7a. As Warrington & Taylor pointed out, one cannot easily explain this
difference in terms of familiarity or impaired depth perception because both views
of a bucket are common and depth is just as important to the three dimensional
structure of figure 7a as it is of 7¢. However, if the internal shape representation
used for recognition were based on a shape’s natural axes, the second figure would
be more difficult to describe correctly since its major axis is foreshortened. If this
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explanation were correct, Warrington & Taylor’s unconventional views would
correspond to views in which an important natural axis of the shape is foreshortened
in the image, making it difficult for the patient to discover or derive a description
in the shape’s canonical coordinate system.
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